Terminale NSI TP : hachage et salage

En cybersécurité, le salage est une technique essentielle pour protéger les mots de passe stockés en base
de données. Les fonctions (pseudo-)aléatoires interviennent & une étape cruciale : la création d’une
donnée unique et imprévisible pour chaque utilisateur.

Pourquoi 1’aléatoire est-il indispensable 7

Sans sel, deux utilisateurs ayant le méme mot de passe (ex: 123456) auraient le méme "hash" (empreinte
numeérique) dans la base de données. Un attaquant pourrait alors utiliser des Rainbow Tables (tables
de correspondance pré-calculées) pour retrouver les mots de passe instantanément.

Le but du sel est de rendre chaque hash unique. Pour cela, le sel doit étre :

e Unique pour chaque utilisateur.

e Imprévisible pour 'attaquant.

Pourquoi ne pas simplement utiliser une fonction "Random" classique ?

Si vous utilisez une fonction pseudo-aléatoire non sécurisée, un attaquant peut "remonter" I’état interne
du générateur aprés avoir observé quelques échantillons de sels. Une fois I’état découvert, il peut prédire
les sels des futurs utilisateurs ou méme deviner ceux des comptes créés récemment, rendant le salage
totalement inutile.

On souhaite écrire une fonction creer_sel () qui utilise le module random . cette fonction renvoie une
chaine de 8 caractéres correspondant aux caractéres ASCII de code décimal entre 33 et 125
cette chaine est construite de maniére aléatoire (en fait pseudo aléatoire)

1. Compléter la fonction creer sel() ci-dessous

import random

def creer_sel():
LI

cette fonction renvoie un sel -chaine de 8 caractéres
correspondant aux caractéres ASCII de code décimal
entre 33 et 125 cette chaine est construite de maniére aléatoire

(en fait pseudo aléatoire)
LI |

sel=""
for i in range (8):

Sl = e e e e e
return sel

Dans la pratique , les mots de passe ne sont pas stockés tels quels dans une base de donnée. On stocke
plutot le haché de mot de passe + sel ainsi que le sel (cote a cote)
Ici on supposera que la base de donnée est une simple liste de tuples (haché,sel)

2. Ecrire une fonction base_donnee qui construit une base de données (en fait une liste de tuples) a
partir d’une liste de mots de passe

Terminale NSI TP : hachage et salage

liste_mot_passe=['iloveu','liverpool','123123"',"'carlos', 'cookie’,\
'sweety','7777777"', " 'orange', ' 'rainbow', 'qm$pAx! ']

def base_donnee():
LI |
la fonction renvoie une liste de tuples (haché , sel)

-haché : haché du mot de passe + sel aléatoire

#on prend une liste vide qu'on remplira avec les tuples
liste_mots_hash=[]
for mot in liste_mot_passe:
#on crée le sel
2
#on calcule 1l'empreinte sur 32 octets (256 bits) du mot de passe+sel
x = hashlib.sha256 ((mot + y).encode()).hexdigest ()
#on stocke le haché et le sel dans une liste de tuples

return liste_mots_hash

Pourquoi stocker le hash d’un mot de passe (plus sel) avec le sel dans la base de don-
nées.Ceci ne facilite t il pas la tache de | attaquant?

Réponse: au premier abord, donner le sel & ’attaquant semble revenir a lui donner la "clé" pour ouvrir
la porte. Mais en réalité, le sel n’est pas une clé secréte, c’est une barriére de calcul.

Voici pourquoi le stockage du sel en clair avec le hash est nécessaire et pourquoi cela ne facilite pas
(vraiment) la tache de 'attaquant.

Mais, comme le sel est une donnée aléatoire unique, le serveur a besoin de savoir quel sel a été utilisé
pour vous au moment de votre inscription.

S’il ne stockait pas le sel, il ne pourrait jamais recalculer le méme hash. Le mot de passe serait "perdu"
& jamais, méme pour le systéme.

3.Compléter la fonction craquer password() qui va tester les mots de passe

du fichier (tel "rockyou.txt")

def craquer_password(hache_cible, sel, fichier_mdp):
LI |
hache_cible : le haché qu on cherche a voler dans la base de données
sel : le sel utilisé pendant le hachage

fichier_mdp : le fichier contenant des mots de passe & tester
LI |

with open(fichier_mdp, 'r', encoding='latin-1') as f:
for ligne in f:
mot = ligne.strip()
On simule le hachage : SHA-256(mot + sel)
essai = hashlib.sha256((mot +) .encode ()).hexdigest ()

if essai == et
return f" Mot de passe trouvé : {motl}"
return "Non trouvé dans la liste."

Exemple d'utilisation
base=base_donnee ()
#print (base)

cible = base[9][0] # Le hash trouvé en base de données
sel_associe = base[9][1] # Le sel trouvé a cdété du hash
print (craquer_password (cible, sel_associe, "rockyou.txt"))

