Cst exercice porte sur la gestion des processus et des ressources par un systeme
d'exploitation.

1. Les états possibles d'un processus sont : prét, élu, terminé et blogué.
a. Expliguer a quoi correspond |'état é/u.

b. Proposer un schéma illustrant les passages entre les différents états.

2. On suppose que quatre processus C,, C,, C; et C, sont créés sur un ordinateur,
et qu'aucun autre processus n'est lancé sur celui-ci, ni préalablement ni pendant
I'execution des quatre processus.

L'ordonnanceur, pour exg&cuter les différents processus préts, les place dans une
structure de donnees de type file. Un processus prét est enfilé et un processus
élu est défilé.

a. Parmi les propositions suivantes, recopier celle qui décrit le fonctionnement
des entrées/sorties dans une file :

i. Premier entré, dernier sorti
ii. Premier entré, premier sorti
ii. Dernier entré. premier sorti

b. On suppose que les quatre processus arrivent dans Ia file et y sont placés
dans l'ordre C,, C,, C; et C,.

- Les temps d'exécution totaux de C,, C,, C; et C, sont respectivement
100 ms, 150 ms, 80 ms et 60 ms.

- Aprés 40 ms d'exécution, le processus C; demande une opération d'écriture
disque, opération qui dure 200 ms. Pendant cette opération d'écriture. le
processus C,; passe a I'état bloqué.

- Aprés 20 ms d'exécution, le processus C; demande une opération d'écriture
disque, opération qui dure 10 ms. Pendant cette opération d'écriture, le
processus C, passe a I'état bloqué.

Sur la frise chronologique donnée en annexe (a rendre avec la copig), les
états du processus C; sont donnés. Compléter la frise avec les états des
processus C+, Cs et Ca.

terminég

elu

elu

pret

Ci

Cz

Cs

00¥

— 08¢

09€
ore
0ce
00€
08z
092
ove
0ce

- 002

08l
091
ovl
oclh
00l
08
09
ov
0c

“ Cet exercice porte sur la gestion des processus et la programmation orientée objet
4

On rappelle qu'un processus est instance d'un programme en cours d'exéeution. Il est identifié par
un numéro unique appelé PID, L'ordonnanceur est la composante du systéme d'exploitation qui gérc
l'aliocation du proeesseur entre leos différents processus. Nous allons nous intéresser & l'algorithme
d’ordonnancement du tourniquet dont le fonctionnement est résumé ei-dessous

Sortie des
Entrés des processus
processus préts - . = Progeqsaur terminés
{ urse
A i I I) d'exécution
File d'attente <=quantum /
_a—"—/

Exacution non tarminéa - processus suspendu

Schéma d'ordonnancement du tourniguet

® Les processus préts a étro exéeutés sont placés dans une file d'attente selon leur ordre d'arrivée :
e L'ordonnanceur alloue le processeur a chaque processus de la file d’attente un méme nombre
de cyeles CPU, appelé quantum :

e Si le processus n'est pas terminé au bout de ce temps. son exéeution est suspendue ot il est
mis a la fin de la file d'attente:
e Sile processus est terminé, il sort définitivement de la file d'attente.

1. On considére trois processus soumis & I'ordonnancenr au méme instant pour lesquels on
donne les informations ci-dessous :

PID | Durée (en cyeles CPU) | Ordre d’arrivée
11 ' 4 1
20 2 2
32 3 3

a) Si le quantum du tourniquet est d'un cycle CPU, recopier et compléter la suite des PID
des processus dans 'ordre de leur exéeution :
11, 20, 32, 11, cerieeeeeeerinnnee

b) Denner la composition de la suite des PID lorsque le quantum du tourniquet est de demx
cveles CPU.
2. L'objectif de la suite de I'exercice est d'implémenter en langage Pythen 'algorithme di tour-
niguet.

Nous allons utiliser une liste pour simuler la file d’attente des processus et la classe Processus
dont le constructeur est donné ci-clessons

i| €lass Procassus:

2 def __init__(s217, pid, duree):

3 self pid = pid

a gz2li duree - duree

g # Le nombre de fycle gui Fest
a salf reste_a_faire - duree

i salf etat -)

Les états possibles d'un processus sont : « Préf », « En cours d’exéeution v, « Suspendu wet
« Terming ».

a) Recopier et compléter Uinstruction Python suivante permettant de exéer la liste d'artente
initiale des processus donnés dans le tableau précédent, (le processus PID 11 est & I'indice
0 de la liste d'attente) :

liste_attente - [Processus(,),

b) Recopier (sans les commentaires) et compléter les trois méthodes suivantes de la classe
Processus :

def execute_un_cycle(self):

def change _stat(s=s1f, nouvel stat):

def est_termine(sslf):

c)

La fonction tourniquet ci-dessous implémente 1'algorithme déerit dans I'exercice.

Elle prend en paramétre une liste d'objets Processus dounés par ordre d'arrivée et un
norabre entier positif correspondant au quantum. La fonction renvoie la liste des PID dans
lordre de lenr exéention par le processeur

Recopier et compléter sur la copie le code manquant.

def tourniquet(liste_attente, quantum):
ordre_execution = []
while liste_attente 0
processus - liste_attente pop()
processus change etat('Clo -our exdcution™)
compteur_tournigust -
while and
ordre_execution append()
processus sxecute_un_cycle()
compten:_tourniquet = compteur_tourniquet

it
processus changs atat(Fu ')
liste_attentes append(processus)
glse:
processus change_etat()

return ordre_sxecutiocn

