Terminale-NSI Rendre la monnaie Programmation dynamique

1 Le rendu de monnaie

Fixons les notations. On suppose donné un systéme monétaire ou les valeurs faciales des piéces (ou
des billets) sont rangées en ordre décroissant. Par exemple, le systéme Euro pourra étre décrit par la
liste euros = [50, 20, 10, 5, 2, 1].

Pour payer une somme de 48 unités on pourrait bien sir payer 48 piéces de 1, ou encore 3 piéces de
10, 3 piéces de 5, 1 piéce de 2 et 1 piéce de 1.

On cherche & payer la somme indiquée, en supposant qu’on a autant de piéces de chaque valeur que
de besoin, en utilisant un nombre minimal de piéces.

L’algorithme glouton consiste & payer d’abord avec la plus grosse piéce possible : ici, il s’agit de 20,
puisque 50 > 48. Ayant donné 20,il reste 28 & payer, et on poursuit avec la méme méthode. Finalement,
on va payer 48 sous la forme 48 = 20 + 20 + 5 + 2 + 1. On a eu besoin de 5 piéces.

Considérons un autre systéme monétaire (en fait c’est 'ancien systéme impérial britannique) représenté
par la liste suivante de valeurs faciales :
imperial = [30, 24, 12, 6, 3, 1].

Pour payer 48 l'algorithme glouton va répondre : 48 = 30 + 12 + 6.

A la différence du systéme euro, pour lequel on peut démontrer que I'algorithme glouton donne toujours
la réponse optimale, on constate que ce n’est pas le cas avec le systéme impérial, puisque on aurait pu
se contenter de 2 piéces : 48 = 24 + 24.

» Compléter la fonction suivante qui implémente en Python 1’algorithme glouton.

euros = [50, 20, 10, 5, 2, 1]
imperial = [30, 24, 12, 6, 3, 1]
def glouton(valeursFaciales, somme):

i = 0 # index de la piéce qu'on va essayer
P = len(valeursFaciales) # nombre de valeurs de piéces disponibles
monnaie = [] # liste des piéces rendues
while i<p and somme>O0:
A% cocooooccoaooocooonoo0oaa
i+=1
else

if somme==

TEBUEM 600000000000000oO0
else:

return ...............

L’appel glouton(euros, 48) renvoie la liste [20, 20, 5, 2, 1] ; 'appel glouton(imperial, 48) renvoie la liste
30, 12, 6]
1.1 Recherche de la réponse optimale

La réponse optimale est celle qui utilise le nombre minimal de piéces.
On a vu que 'algorithme glouton échoue a la trouver en général (I’exemple de rendre 48 avec le systéme
impeérial suffit & le prouver).

Programmation dynamique



Terminale-NSI Rendre la monnaie Programmation dynamique

Approche récursive
Une approche récursive permet de résoudre le probleme :

soit x une valeur faciale de I'une des piéces du systéme monétaire.

Pour rendre une somme s de fagcon optimale, si 'on veut utiliser au moins une fois la piéce x, il suffit de
rendre x et la somme s —x de fagon optimale. Il n’y a plus qu’a choisir, parmi tous les choix possibles
de z, celui qui permet d’utiliser le minimum de piéces.

Autrement dit, si on appelle f(s) le nombre minimal de piéces qu’il faut utiliser pour payer la somme
s, on a simplement:

e f(0)=0cet
e f(s) = min (1 + f(s —x))
r<=s
le minimum étant calculé sur toutes les valeurs & d’une piéce.

» Compléter alors le programme récursif suivant :

Remarque: On a importé du module math la valeur spéciale inf qui représente l'infini : pour tout entier
a, 'expression a < inf vaut True.

Hélas, lexécution de l'appel dynRecursif (euros, 48) est extrémement lente. les mémes calculs étant
effectués de fagon répétée. Une analyse du probléme montrerait que la complexité est exponentielle.

» Compléter 'arbre récursif qui montre tous les cas possibles engendrés par la fonction récursive

dynRecursif.

27

T

26 20 4

SN / N\ \

25 19 4 19 13 3

Programmation dynamique



Terminale-NSI Rendre la monnaie Programmation dynamique

Mémoisation

Une idée classique consiste & mémoriser les résultats des appels pour étre siir qu’on n’aura pas besoin
de les calculer plusieurs fois.
Ici, le calcul de f(s) utilise le calcul de f(s — z) pour chaque valeur de x. Autrement dit, f (s) n’utilise

au plus que les valeurs de f(s — 1), f(s — 2),..., f(3), f(2), f(1).

On va donc créer un tableau conservant ces données, et calculer de fagon systématique pour des valeurs
croissantes de 'index
» Compléter la fonction ci-dessous:

def dynMemoise(valeursFaciales, somme):
f = [0] * (somme + 1)
for s in range(l, somme + 1):
f[s] = inf
iE®F ©00000000000000000000000000 8

fls] = ...
return f[somme]

Le calcul de f (48) va peut-étre utiliser plusieurs fois la valeur de f (8), mais celle-ci n’aura cette fois été
calculée qu’une seule fois,et aussitot rangée en mémoire (plus précisément dans un tableau qui occupe
de la place mémoire).

Cela ne fonctionne que parce que pour calculer f (48), par exemple, on a recours seulement aux valeurs
de f (s) pour s < 48.

Cette technique est habituellement appelée mémoisation, fort laide tentative de traduction de 'anglais
memoization mais qui est passée dans 'usage.

Cette fois 'appel dynMemoise(euros, 48) répond immédiatement 5 (I'algorithme glouton avait bien
trouvé la réponse optimale) et dynMemoise(imperial, 48) renvoie 2, ce qui correspond a la solution
optimale 48 = 24 + 24.

L’algorithme est de complexité tout & fait raisonnable : les deux boucles emboitées correspondent a
un temps d’exécution de 'ordre de somme * len(valeursFaciales).

En revanche, il a un coit en espace (ou en mémoire) : il faut réserver la place nécessaire pour ranger
toutes les valeurs de f (n).

Programmation dynamique



Terminale-NSI Rendre la monnaie Programmation dynamique

1.2 Reconstitution des détails de la réponse optimale
L’algorithme précédent nous donne la solution optimale en nombre de piéces , mais ne donne pas la
liste des piéces utililisées.

Si on remplace la derniére ligne de la fonction dynMemoise par return f, appel dynMemoise(imperial,
17) renvoie le tableau [0, 1,2, 1,2,3,1,2,3,2,3,4,1,2,3,2, 3, 4].
Il y a une réponse optimale avec 4 piéces, comment la reconstituer 7

On a f(17) = 4, on cherche une piéce x telle que f(17 — z) = 3, on a le choix entrex = 1,2 = 3 et
x = 12. Choisissons x = 12.

On a f(17) = 1+ f(5). On cherche maintenant une piéce 2’ telle que f(5 — x’) = 2, on peut choisir
a2’ = 3 (2’ = 1 aurait également convenu). On a f(17) = 14+ f(5) = 1+1+ f(2) et enfin f(2) = 1+ f(1).
Une solution optimale est donc de payer 17 =1 + 1 + 3 + 12, avec 4 piéces.

On peut modifier la fonction précédente pour reconstituer une décomposition optimale :
il suffit de détailler le calcul du minimum et en profiter pour mémoriser les valeurs notées x, 2" etc.

» Compléter la fonction suivante

Programmation dynamique



	Le rendu de monnaie
	Recherche de la réponse optimale
	Reconstitution des détails de la réponse optimale


