
TNSI programmation dynamique: Un premier exemple (la suite de Fibonacci)

Exercice 1

On rappelle la fonction récursive fibo_rec qui calcule le nième terme de la suite de �bonacci dé�nie par:

u0 = 1 , u1 = 1 et pour tout n ⩾ 2 : un = un−1 + un−2

def fibo_rec(n):

'''

une version récursive

n est le rang du terme de la suite qu on veut calculer.

'''

if n <= 1:

return n

return fibo_rec(n-1) + fibo_rec(n-2)

1. Calculer u5 en utilisant l'algorithme récursif proposé.

2. Établir un arbre récursif qui schématise le fonctionnement récursif de l'algorithme.

3. Donner le nombre d'additions e�ectuées pendant l'exécution de l'appel :

fibo_rec(5)

puis l'appel

fibo_rec(7)

4. Quelle remarque peut-on faire quand aux opérations e�ectuées pour calculer les termes de la suite de �bonacci
en utilisant l'algorithme précédent?

5. Estimez la complexité de cet algorithme récursif.

6. L'arbre précédent montre clairement que la même fonction fibo_rec est appelée plusieurs fois pour le calcul
des mêmes termes (chevauchement de sous-problèmes). D'où l'idée de réécrire la fonction , toujours de
manière récursive , mais en la modi�ant de manière à ce qu'elle sauvegarde les termes calculés une première
fois. Compléter la fonction fibo_memo_rec ci-dessous

def fibo_memo(n):

T=[0]*(n+1)

T[0],T[1] = 1,1

return fibo_memo_rec(T,n)

def fibo_memo_rec(T,n):

#Si le terme de rang n a déjà été calculé

if T[n]>0:

return .......

#le cas de base

if .............:

return 1

else:

T[n]= ...................

return .....

La fonction fibo_memo_rec commence par véri�er si elle a déjà résolu le problème. Si c'est le cas , elle
renvoie la valeur sauvegardée dans le tableau T , évitant ainsi la répétition de calculs déjà e�ectués.

programmation dynamique Janvier 2026


