TNSI programmation dynamique: Un premier exemple (la suite de Fibonacci)

Exercice 1

On rappelle la fonction récursive fibo_rec qui calcule le niéme terme de la suite de fibonacci définie par:

up=1,u; =1 et pourtoutn=>2:u, =up,_1+ Un_2

def fibo_rec(n):

>

une version récursive
n est le rang du terme de la suite qu on veut calculer.

)

if n <= 1:
return n
return fibo_rec(n-1) + fibo_rec(n-2)

1. Calculer us en utilisant 1’algorithme récursif proposé.
2. Etablir un arbre récursif qui schématise le fonctionnement récursif de I’algorithme.

3. Donner le nombre d’additions effectuées pendant I’exécution de I'appel :

fibo_rec(5)

puis 'appel

fibo_rec(7)

4. Quelle remarque peut-on faire quand aux opérations effectuées pour calculer les termes de la suite de fibonacci
en utilisant ’algorithme précédent?

5. Estimez la complexité de cet algorithme récursif.

6. L’arbre précédent montre clairement que la méme fonction fibo_rec est appelée plusieurs fois pour le calcul
des mémes termes (chevauchement de sous-problémes). D’ou lidée de réécrire la fonction , toujours de
maniére récursive , mais en la modifiant de maniére & ce qu’elle sauvegarde les termes calculés une premiére
fois. Compléter la fonction fibo_memo_rec ci-dessous

def fibo_memo(n):
T=[0]*(n+1)
T[O0],T[1] = 1,1
return fibo_memo_rec(T,n)
def fibo_memo_rec(T,n):
#Si le terme de rang n a déja été calculé
if T[nl>0:
return
#le cas de base
e

Tlnl=

La fonction fibo_memo_rec commence par vérifier si elle a déja résolu le probléme. Si c’est le cas |, elle
renvoie la valeur sauvegardée dans le tableau T | évitant ainsi la répétition de calculs déja effectués.

programmation dynamique Janvier 2026

