recherche du minimum(ou du maximum)

Recherche _minimum dans un tableau a n éléments

Entrée : Un tableau A de n nombres [ay, .., a,]
Sortie : Indice du plus petit élément

n=taille(A)
min < 1
Pour i allant de 2 & n faire :
Si Ali] < A[min] :
min < i
Fin Si
Fin Pour
Retourner min

O ~NOO1 A WN -

Exercice:Modifier I'algorithme ci-dessus pour déterminer le plus
grand élément dans le tableau A.

Premiére NSI Algorithmes de Tri

recherche du minimum(ou du maximum)

Complexité:Dans cet algorithme il y a obligatoirement n — 1

comparaisons.
On a donc un coiit dont |'ordre de grandeur est n (cott linéaire), la

taille du tableau .On écrit O(n) .

Premiére NSI Algorithmes de Tri

TRI SELECTION

Présentation d'un tri, le tri sélection , qui ordonne les éléments
d’un tableau (liste en Python)

(*]

Premiére NSI Algorithmes de Tri

TRI SELECTION

Présentation d'un tri, le tri sélection , qui ordonne les éléments
d’un tableau (liste en Python)

(*]

o Trouver le plus petit élément et le mettre au début de la liste.

Premiére NSI Algorithmes de Tri

TRI SELECTION

Présentation d'un tri, le tri sélection , qui ordonne les éléments
d’un tableau (liste en Python)

°
o Trouver le plus petit élément et le mettre au début de la liste.

o Trouver le deuxiéme plus petit élément et le mettre en
deuxiéme position.

Premiére NSI Algorithmes de Tri

TRI SELECTION

Présentation d'un tri, le tri sélection , qui ordonne les éléments
d’un tableau (liste en Python)

°
o Trouver le plus petit élément et le mettre au début de la liste.

o Trouver le deuxiéme plus petit élément et le mettre en
deuxiéme position.

o Trouver le troisiéme plus petit élément et le mettre en
troisiéme position.

Premiére NSI Algorithmes de Tri

TRI SELECTION

Présentation d'un tri, le tri sélection , qui ordonne les éléments
d’un tableau (liste en Python)

°
o Trouver le plus petit élément et le mettre au début de la liste.

o Trouver le deuxiéme plus petit élément et le mettre en
deuxiéme position.

o Trouver le troisiéme plus petit élément et le mettre en
troisiéme position.

Premiére NSI Algorithmes de Tri

TRI SELECTION: Un exemple

8 12 21 14 3

emiére NSI Algorithmes de Tri

TRI SELECTION: Un exemple

8 12 21 14 3

3 12 21 14 8

Premiére NSI Algorithmes de Tri

TRI SELECTION: Un exemple

8 12 21 14 3
3 12 21 14 8

3 8 21 14 12

Premiére NSI Algorithmes de Tri

TRI SELECTION: Un exemple

8 12 21 14 3
3 12 21 14 8
3 8 21 14 12

3 8 12 14 21

Premiére NSI Algorithmes de Tri

TRI SELECTION: Un exemple

8 12 21 14 3
3 12 21 14 8
3 8 21 14 12

3 8 12 14 21

Premiére NSI Algorithmes de Tri

TRI SELECTION

TRI_SELECTION(A)

Entrée : Un tableau de n nombres (ay, .., a,)

Sortie : une permutation de la suite de telle sorte que
a; < ax < ... < a,.

Pour i allant de 1 a n-1 faire
min < i
Pour j allant de i+1 a n faire
SI A[j] < A[min]
min < |
Fin Sl
Fin Pour
Echange(A,i,min)
9 Fin Pour
Remarque : |'appel de Echange(A,i,min) permute les éléments A[i]
et A[min] du tableau.

O ~NO OB WwWwWhN B

Premiére NSI Algorithmes de Tri

Complexité du tri sélection

La boucle de la ligne 1 doit étre exécutée n-1 fois. La boucle de la
ligne 3 effectue n — 1 comparaisons au premier passage dans la
boucle , puis n — 2, n— 3,...,comparaisons , ce qui donne au total:
(n—1)+(n—2)+ ...+ 1 comparaisons. D’apres le cours sur les
suites arithmétiques nous obtenons:

n(n—1)
2

On dit que I'algorithme de Tri par sélection a une complexité en
n?.0n écrit O(n?).

comparaisons

Premiére NSI Algorithmes de Tri

Complexité du tri sélection

Remarque: Pour déterminer la complexité de |'algorithme du tri
sélection , on s'est intéressé ici aux seules comparaisons (ligne 4).
On peut se demander pourquoi ne s'intéresse-t-on pas aux autres
opérations (affectations aux lignes 2 ,5 ainsi que I'échange a la
ligne 8).

En réalité , compter ces opérations ne change pas la complexité de
I'algorithme qui sera toujours quadratique.

Proposer une explication.

Premiére NSI Algorithmes de Tri

TRI INSERTION

Tri du joueur de cartes

o Ordonner les deux premiers éléments.

Premiére NSI Algorithmes de Tri

TRI INSERTION

Tri du joueur de cartes
o Ordonner les deux premiers éléments.

o Insérer le troisiéme élément de sorte que les trois premiers
éléments soient rangés dans le bon ordre.

Premiére NSI Algorithmes de Tri

TRI INSERTION

Tri du joueur de cartes
o Ordonner les deux premiers éléments.

o Insérer le troisiéme élément de sorte que les trois premiers
éléments soient rangés dans le bon ordre.

o Puis on insére le quatriéme élément 3 sa place

Premiére NSI Algorithmes de Tri

TRI INSERTION

Tri du joueur de cartes
o Ordonner les deux premiers éléments.

o Insérer le troisiéme élément de sorte que les trois premiers
éléments soient rangés dans le bon ordre.

o Puis on insére le quatriéme élément 3 sa place

o ...

Premiére NSI Algorithmes de Tri

TRI INSERTION

A la fin de la iéme insertion, les i premiers éléments de T sont triés
et rangés au début du tableau.

Premiére NSI Algorithmes de Tri

TRI INSERTION

TRI Insertion(A)

Entrée : Une tableau de n nombres (ay, .., an)

Sortie : une permutation de la suite de telle sorte que
a<a<..<ap.

1 n=taille(A)

2 Pour j allant de 2 a A.longueur faire :

3 cle < A[j]

4 // Insere A[j] dans la suite triee A[1,..,j-1]
5 i +j-1

6 Tant que i >0 et Afi]>cle Faire :

7 Afi+1]« A[i]

8 i« i-1

9 Afi+1] <cle
Exercice:Déterminer la complexité du tri insertion

Premiére NSI Algorithmes de Tri

TRI INSERTION

Pour montrer que I'algorithme de tri par insertion est correct , on
se sert de la notion d'invariant de boucle.

On appelle invariant de boucle , une propriété qui , si elle est
vraie avant 'entrée dans la boucle reste vraie aprés chaque
passage dans la boucle , et est par conséquent vraie aussi a la
sortie de la boucle.

La mise en évidence d’un invariant de boucle adapté permet
de prouver la correction d'un algorithme.

Premiére NSI Algorithmes de Tri

TRI INSERTION-Terminaison

Pour montrer qu’un programme se termine , on se sert de la notion
de Variant.

il s'agit d'une quantité entiére qui :

o Doit étre positive ou nulle pour rester dans la boucle.

o Doit décroitre strictement a chaque itération.

Si on arrive a trouver une telle quantité, il est évident que 'on va
nécessairement sortir de la boucle au bout d'un nombre fini
d’itérations, puisqu’un entier positif ne peut décroitre infiniment.

Premiére NSI Algorithmes de Tri

TRI INSERTION-Terminaison-Correction

Pour I'algorithme de tri par insertion , on remarque que le
sous-tableau A[1..j-1] posséde les propriétés d'un invariant.

En effet , les éléments de ce sous-tableau possédent la propriété
d'étre triés au début , avant chaque itération de la boucle for et a
la fin.

Ainsi:

Lorsque j=2 , le sous tableau A[1..j-1] est le sous tableau A[1] qui
contient le premier élément du tableau 3 trier et qui de fait est déja
trié.

Premiére NSI Algorithmes de Tri

TRI INSERTION-Terminaison-Correction

Montrons que chaque itération conserve l'invariant:

Premiére NSI Algorithmes de Tri

TRI INSERTION-Terminaison-Correction

Montrons que chaque itération conserve l'invariant:

Dans la boucle Pour , A[j-1] , A[j-2] , A[j-3] etc , se déplacent
d’une position vers la droite jusqu’a ce qu’on trouve la bonne
position pour insérer A[j].

Premiére NSI Algorithmes de Tri

TRI INSERTION-Terminaison-Correction

Montrons que chaque itération conserve l'invariant:

Dans la boucle Pour , A[j-1] , A[j-2] , A[j-3] etc , se déplacent
d’une position vers la droite jusqu’a ce qu’on trouve la bonne
position pour insérer A[j].

Le sous-tableau A[1..j] se compose alors des éléments situés
initialement dans A[1..j], mais qui ont été triés.

Premiére NSI Algorithmes de Tri

TRI INSERTION-Terminaison-Correction

Montrons que chaque itération conserve l'invariant:

Dans la boucle Pour , A[j-1] , A[j-2] , A[j-3] etc , se déplacent
d’une position vers la droite jusqu’a ce qu’on trouve la bonne
position pour insérer A[j].

Le sous-tableau A[1..j] se compose alors des éléments situés
initialement dans A[1..j], mais qui ont été triés.

Intéressons-nous a présent a la boucle intérieure Tant que.

Premiére NSI Algorithmes de Tri

TRI INSERTION-Terminaison-Correction

Pour montrer que la boucle Tant que termine , on peut remarquer
que la condition i > 0 est mise en défaut dés que i atteint la valeur
0, ce qui est certain puisque l'instruction i=i-1 décrémente la
valeur de i d'une unité (d’ou ici la notion de variant) et comme le
tableau contient un nombre fini d’éléments , on est siir que i atteint

la valeur 0.

Premiére NSI Algorithmes de Tri

TRI INSERTION-Terminaison-Correction

Pour montrer que la boucle Tant que termine , on peut remarquer
que la condition i > 0 est mise en défaut dés que i atteint la valeur
0, ce qui est certain puisque l'instruction i=i-1 décrémente la
valeur de i d'une unité (d’ou ici la notion de variant) et comme le
tableau contient un nombre fini d’éléments , on est siir que i atteint
la valeur 0.

Quand la boucle Pour se termine , c'est-a-dire lorsque j=n+1 , alors
le sous-tableau A[1..j-1] est le tableau entier A[1..n] et il est trié.

Premiére NSI Algorithmes de Tri

