
recherche du minimum(ou du maximum)

Recherche_minimum dans un tableau à n éléments

Entrée : Un tableau A de n nombres [a1, .., an]
Sortie : Indice du plus petit élément

1 n=taille(A)
2 min ← 1
3 Pour i allant de 2 à n faire :
4 Si A[i] < A[min] :
5 min ← i
6 Fin Si
7 Fin Pour
8 Retourner min

Exercice:Modi�er l'algorithme ci-dessus pour déterminer le plus
grand élément dans le tableau A.
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recherche du minimum(ou du maximum)

Complexité:Dans cet algorithme il y a obligatoirement n − 1
comparaisons.
On a donc un coût dont l'ordre de grandeur est n (coût linéaire), la
taille du tableau .On écrit O(n) .
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TRI SELECTION

Présentation d'un tri , le tri sélection , qui ordonne les éléments
d'un tableau (liste en Python)

Trouver le plus petit élément et le mettre au début de la liste.

Trouver le deuxième plus petit élément et le mettre en
deuxième position.

Trouver le troisième plus petit élément et le mettre en
troisième position.

...
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TRI SELECTION: Un exemple

8 12 21 14 3

3 12 21 14 8

3 8 21 14 12

3 8 12 14 21
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TRI SELECTION

TRI_SELECTION(A)
Entrée : Un tableau de n nombres (a1, .., an)
Sortie : une permutation de la suite de telle sorte que
a1 6 a2 6 ... 6 an.

1 Pour i allant de 1 à n-1 faire
2 min ← i
3 Pour j allant de i+1 à n faire
4 SI A[j] < A[min]
5 min ← j
6 Fin SI
7 Fin Pour
8 Echange(A,i,min)
9 Fin Pour

Remarque : l'appel de Echange(A,i,min) permute les éléments A[i]
et A[min] du tableau.
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Complexité du tri sélection

La boucle de la ligne 1 doit être exécutée n-1 fois. La boucle de la
ligne 3 e�ectue n − 1 comparaisons au premier passage dans la
boucle , puis n − 2 , n − 3,...,comparaisons , ce qui donne au total:
(n − 1) + (n − 2) + ...+ 1 comparaisons. D'après le cours sur les
suites arithmétiques nous obtenons:

n(n − 1)

2
comparaisons

On dit que l'algorithme de Tri par sélection a une complexité en
n2.On écrit O(n2).
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Complexité du tri sélection

Remarque: Pour déterminer la complexité de l'algorithme du tri
sélection , on s'est intéressé ici aux seules comparaisons (ligne 4).
On peut se demander pourquoi ne s'intéresse-t-on pas aux autres
opérations (a�ectations aux lignes 2 ,5 ainsi que l'échange à la
ligne 8).
En réalité , compter ces opérations ne change pas la complexité de
l'algorithme qui sera toujours quadratique.

Proposer une explication.
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TRI INSERTION

Tri du joueur de cartes

Ordonner les deux premiers éléments.

Insérer le troisième élément de sorte que les trois premiers
éléments soient rangés dans le bon ordre.

Puis on insère le quatrième élément à sa place

...
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TRI INSERTION

A la �n de la ième insertion, les i premiers éléments de T sont triés
et rangés au début du tableau.
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TRI INSERTION

TRI_Insertion(A)
Entrée : Une tableau de n nombres (a1, .., an)
Sortie : une permutation de la suite de telle sorte que
a1 6 a2 6 ... 6 an.
1 n=taille(A)
2 Pour j allant de 2 à A.longueur faire :
3 cle ← A[j]
4 // Insere A[j] dans la suite triee A[1,..,j-1]
5 i ←j-1
6 Tant que i >0 et A[i]>cle Faire :
7 A[i+1]← A[i]
8 i← i-1
9 A[i+1] ←cle

Exercice:Déterminer la complexité du tri insertion
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TRI INSERTION

Pour montrer que l'algorithme de tri par insertion est correct , on
se sert de la notion d'invariant de boucle.

Invariant de boucle(Correction)

On appelle invariant de boucle , une propriété qui , si elle est
vraie avant l'entrée dans la boucle reste vraie après chaque
passage dans la boucle , et est par conséquent vraie aussi à la
sortie de la boucle.

La mise en évidence d'un invariant de boucle adapté permet
de prouver la correction d'un algorithme.
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TRI INSERTION-Terminaison

Pour montrer qu'un programme se termine , on se sert de la notion
de Variant.

Variant de boucle (Terminaison)

il s'agit d'une quantité entière qui :

Doit être positive ou nulle pour rester dans la boucle.

Doit décroître strictement à chaque itération.

Si on arrive à trouver une telle quantité, il est évident que l'on va
nécessairement sortir de la boucle au bout d'un nombre �ni
d'itérations, puisqu'un entier positif ne peut décroitre in�niment.
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TRI INSERTION-Terminaison-Correction

Pour l'algorithme de tri par insertion , on remarque que le
sous-tableau A[1..j-1] possède les propriétés d'un invariant.
En e�et , les éléments de ce sous-tableau possèdent la propriété
d'être triés au début , avant chaque itération de la boucle for et à
la �n.
Ainsi:

Lorsque j=2 , le sous tableau A[1..j-1] est le sous tableau A[1] qui
contient le premier élément du tableau à trier et qui de fait est déjà
trié.
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TRI INSERTION-Terminaison-Correction

Montrons que chaque itération conserve l'invariant:

Dans la boucle Pour , A[j-1] , A[j-2] , A[j-3] etc , se déplacent
d'une position vers la droite jusqu'à ce qu'on trouve la bonne
position pour insérer A[j].

Le sous-tableau A[1..j] se compose alors des éléments situés
initialement dans A[1..j], mais qui ont été triés.

Intéressons-nous à présent à la boucle intérieure Tant que.
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TRI INSERTION-Terminaison-Correction

Pour montrer que la boucle Tant que termine , on peut remarquer
que la condition i > 0 est mise en défaut dès que i atteint la valeur
0 , ce qui est certain puisque l'instruction i=i-1 décrémente la
valeur de i d'une unité ( d'où ici la notion de variant) et comme le
tableau contient un nombre �ni d'éléments , on est sûr que i atteint
la valeur 0.

Quand la boucle Pour se termine , c'est-à-dire lorsque j=n+1 , alors
le sous-tableau A[1..j-1] est le tableau entier A[1..n] et il est trié.
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