recherche du minimum(ou du maximum)

Recherche _minimum dans un tableau a n éléments

Entrée : Un tableau A de n nombres [ay, .., a,]
Sortie : Indice du plus petit élément

n=taille(A)
min < 1
Pour i allant de 2 & n faire :
Si Ali] < A[min] :
min < i
Fin Si
Fin Pour
Retourner min

O ~NOO1 A WN -

Exercice:Modifier I'algorithme ci-dessus pour déterminer le plus
grand élément dans le tableau A.
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recherche du minimum(ou du maximum)

Complexité:Dans cet algorithme il y a obligatoirement n — 1

comparaisons.
On a donc un coiit dont |'ordre de grandeur est n (cott linéaire), la

taille du tableau .On écrit O(n) .
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TRI SELECTION

Présentation d'un tri, le tri sélection , qui ordonne les éléments
d’un tableau (liste en Python)

(*]
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TRI SELECTION

Présentation d'un tri, le tri sélection , qui ordonne les éléments
d’un tableau (liste en Python)

(*]

o Trouver le plus petit élément et le mettre au début de la liste.
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TRI SELECTION

Présentation d'un tri, le tri sélection , qui ordonne les éléments
d’un tableau (liste en Python)

°
o Trouver le plus petit élément et le mettre au début de la liste.

o Trouver le deuxiéme plus petit élément et le mettre en
deuxiéme position.
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TRI SELECTION

Présentation d'un tri, le tri sélection , qui ordonne les éléments
d’un tableau (liste en Python)

°
o Trouver le plus petit élément et le mettre au début de la liste.

o Trouver le deuxiéme plus petit élément et le mettre en
deuxiéme position.

o Trouver le troisiéme plus petit élément et le mettre en
troisiéme position.
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TRI SELECTION

Présentation d'un tri, le tri sélection , qui ordonne les éléments
d’un tableau (liste en Python)

°
o Trouver le plus petit élément et le mettre au début de la liste.

o Trouver le deuxiéme plus petit élément et le mettre en
deuxiéme position.

o Trouver le troisiéme plus petit élément et le mettre en
troisiéme position.
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TRI SELECTION: Un exemple

8 12 21 14 3
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TRI SELECTION: Un exemple

8 12 21 14 3

3 12 21 14 8
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TRI SELECTION: Un exemple

8 12 21 14 3
3 12 21 14 8

3 8 21 14 12

Premiére NSI Algorithmes de Tri



TRI SELECTION: Un exemple

8 12 21 14 3
3 12 21 14 8
3 8 21 14 12

3 8 12 14 21
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TRI SELECTION: Un exemple

8 12 21 14 3
3 12 21 14 8
3 8 21 14 12

3 8 12 14 21
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TRI SELECTION

TRI_SELECTION(A)

Entrée : Un tableau de n nombres (ay, .., a,)

Sortie : une permutation de la suite de telle sorte que
a; < ax < ... < a,.

Pour i allant de 1 a n-1 faire
min < i
Pour j allant de i+1 a n faire
SI A[j] < A[min]
min < |
Fin Sl
Fin Pour
Echange(A,i,min)
9 Fin Pour
Remarque : |'appel de Echange(A,i,min) permute les éléments A[i]
et A[min] du tableau.

O ~NO OB WwWwWhN B
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Complexité du tri sélection

La boucle de la ligne 1 doit étre exécutée n-1 fois. La boucle de la
ligne 3 effectue n — 1 comparaisons au premier passage dans la
boucle , puis n — 2, n— 3,...,comparaisons , ce qui donne au total:
(n—1)+(n—2)+ ...+ 1 comparaisons. D’apres le cours sur les
suites arithmétiques nous obtenons:

n(n—1)
2

On dit que I'algorithme de Tri par sélection a une complexité en
n?.0n écrit O(n?).

comparaisons
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Complexité du tri sélection

Remarque: Pour déterminer la complexité de |'algorithme du tri
sélection , on s'est intéressé ici aux seules comparaisons (ligne 4).
On peut se demander pourquoi ne s'intéresse-t-on pas aux autres
opérations (affectations aux lignes 2 ,5 ainsi que I'échange a la
ligne 8).

En réalité , compter ces opérations ne change pas la complexité de
I'algorithme qui sera toujours quadratique.

Proposer une explication.
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TRI INSERTION

Tri du joueur de cartes

o Ordonner les deux premiers éléments.
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TRI INSERTION

Tri du joueur de cartes
o Ordonner les deux premiers éléments.

o Insérer le troisiéme élément de sorte que les trois premiers
éléments soient rangés dans le bon ordre.
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TRI INSERTION

Tri du joueur de cartes
o Ordonner les deux premiers éléments.

o Insérer le troisiéme élément de sorte que les trois premiers
éléments soient rangés dans le bon ordre.

o Puis on insére le quatriéme élément 3 sa place
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TRI INSERTION

Tri du joueur de cartes
o Ordonner les deux premiers éléments.

o Insérer le troisiéme élément de sorte que les trois premiers
éléments soient rangés dans le bon ordre.

o Puis on insére le quatriéme élément 3 sa place

o ...
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TRI INSERTION

A la fin de la iéme insertion, les i premiers éléments de T sont triés
et rangés au début du tableau.
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TRI INSERTION

TRI Insertion(A)

Entrée : Une tableau de n nombres (ay, .., an)

Sortie : une permutation de la suite de telle sorte que
a<a<..<ap.

1 n=taille(A)

2 Pour j allant de 2 a A.longueur faire :

3 cle < A[j]

4 // Insere A[j] dans la suite triee A[1,..,j-1]
5 i +j-1

6 Tant que i >0 et Afi]>cle Faire :

7 Afi+1]« A[i]

8 i« i-1

9 Afi+1] <cle
Exercice:Déterminer la complexité du tri insertion
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TRI INSERTION

Pour montrer que I'algorithme de tri par insertion est correct , on
se sert de la notion d'invariant de boucle.

On appelle invariant de boucle , une propriété qui , si elle est
vraie avant 'entrée dans la boucle reste vraie aprés chaque
passage dans la boucle , et est par conséquent vraie aussi a la
sortie de la boucle.

La mise en évidence d’un invariant de boucle adapté permet
de prouver la correction d'un algorithme.
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TRI INSERTION-Terminaison

Pour montrer qu’un programme se termine , on se sert de la notion
de Variant.

il s'agit d'une quantité entiére qui :

o Doit étre positive ou nulle pour rester dans la boucle.

o Doit décroitre strictement a chaque itération.

Si on arrive a trouver une telle quantité, il est évident que 'on va
nécessairement sortir de la boucle au bout d'un nombre fini
d’itérations, puisqu’un entier positif ne peut décroitre infiniment.
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TRI INSERTION-Terminaison-Correction

Pour I'algorithme de tri par insertion , on remarque que le
sous-tableau A[1..j-1] posséde les propriétés d'un invariant.

En effet , les éléments de ce sous-tableau possédent la propriété
d'étre triés au début , avant chaque itération de la boucle for et a
la fin.

Ainsi:

Lorsque j=2 , le sous tableau A[1..j-1] est le sous tableau A[1] qui
contient le premier élément du tableau 3 trier et qui de fait est déja
trié.
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TRI INSERTION-Terminaison-Correction

Montrons que chaque itération conserve l'invariant:
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TRI INSERTION-Terminaison-Correction

Montrons que chaque itération conserve l'invariant:

Dans la boucle Pour , A[j-1] , A[j-2] , A[j-3] etc , se déplacent
d’une position vers la droite jusqu’a ce qu’on trouve la bonne
position pour insérer A[j].
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TRI INSERTION-Terminaison-Correction

Montrons que chaque itération conserve l'invariant:

Dans la boucle Pour , A[j-1] , A[j-2] , A[j-3] etc , se déplacent
d’une position vers la droite jusqu’a ce qu’on trouve la bonne
position pour insérer A[j].

Le sous-tableau A[1..j] se compose alors des éléments situés
initialement dans A[1..j], mais qui ont été triés.
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TRI INSERTION-Terminaison-Correction

Montrons que chaque itération conserve l'invariant:

Dans la boucle Pour , A[j-1] , A[j-2] , A[j-3] etc , se déplacent
d’une position vers la droite jusqu’a ce qu’on trouve la bonne
position pour insérer A[j].

Le sous-tableau A[1..j] se compose alors des éléments situés
initialement dans A[1..j], mais qui ont été triés.

Intéressons-nous a présent a la boucle intérieure Tant que.
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TRI INSERTION-Terminaison-Correction

Pour montrer que la boucle Tant que termine , on peut remarquer
que la condition i > 0 est mise en défaut dés que i atteint la valeur
0, ce qui est certain puisque l'instruction i=i-1 décrémente la
valeur de i d'une unité ( d’ou ici la notion de variant) et comme le
tableau contient un nombre fini d’éléments , on est siir que i atteint

la valeur 0.
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TRI INSERTION-Terminaison-Correction

Pour montrer que la boucle Tant que termine , on peut remarquer
que la condition i > 0 est mise en défaut dés que i atteint la valeur
0, ce qui est certain puisque l'instruction i=i-1 décrémente la
valeur de i d'une unité ( d’ou ici la notion de variant) et comme le
tableau contient un nombre fini d’éléments , on est siir que i atteint
la valeur 0.

Quand la boucle Pour se termine , c'est-a-dire lorsque j=n+1 , alors
le sous-tableau A[1..j-1] est le tableau entier A[1..n] et il est trié.
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