
Première-NSI Algorithmes de tri

Exercice (tri insertion-Ordre croissant)

On rappelle l'algorithme du tri insertion sur un tableau A[1..n]

1 Pour j allant de 2 a n :
2 cle ← A[j]
3 // Insere A[j] dans la suite triee A[1,..,j-1]
4 i ←j-1
5 Tant que i > 0 et A[i] > cle Faire :
6 A[i+1]← A[i]
7 i← i-1
8 Fin Tant Que

9 A[i+1] ←cle
10 Fin Pour

1. Appliquer l'algorithme à la liste de nombres : 42 15 19 8 23

2. Indiquer le numéro de la ligne où se passe l'insertion éventuelle.

3. Pour chaque itération de la boucle Pour , comptez le nombre de comparaisons (A[i] >
cle) de la ligne 5, le nombre d'a�ectations de la ligne 6 (décalages vers la droite) .
(Pour ce faire ,recopiez et compléter le tableau ci-dessous)

itération(s) nombre de com-
paraisons(ligne
5)

nombre
d'a�ectations
(ligne 6)

1ere itération

4. Reprendre la question précédente en utilisant la liste: 50 10 15 20 31 35

5. Dans le cas où l'on applique l'algorithme à une liste de n (n > 2) nombres ordonnés dans
l'ordre décroissant , donner le total du nombre d'opérations indiquées dans la question 3
en fonction de n.
Quelle est dans ce cas la complexité de l'algorithme de tri par insertion?

Mars 2024

Première-NSI Algorithmes de tri

Exercice 2 (tri à bulles)

Dans le tri à bulles , on commence par comparer le premier élément A[0] avec le suivant A[1]
et s'il est plus grand on échange A[0] et A[1].Puis on refait de même en comparant A[1] et
A[2] et ainsi de suite .
De cette manière le plus grand élément du tableau est le dernier.

Puis on recommence l'étape précédente avec les n-1 premiers éléments du tableau.
Quand il ne reste plus qu'un élément , le premier en l'occurrence, l'algorithme s'arrête et le
tableau est trié.

On traduit alors cet algorithme à l'aide du pseudo-code.

Tri à bulles sur un tableau A[1..n]
1 i=n-1
2 Tant Que i >=1 faire
3 Pour j allant de 1 à i
4 Si A[j] > A[j+1]
5 Echanger A[j] et A[j+1]
6 Fin Si

7 Fin Pour

8 i = i-1
9 Fin Tant Que

1. Appliquer l'algorithme à la liste de nombres : 71 15 50 8 12 32

2. Pour chaque itération de la boucle Tant Que de la ligne 2 , comptez le nombre de
comparaisons de la ligne 4, le nombre d'échanges de la ligne 5 .
On pourra copier et remplir le tableau suivant:

itération(s) nombre de compara-

isons(ligne 4)

nombre

d'échanges(ligne 5)

1ere itéra-

tion(i=5)

2eme itération

(i=4)

3. Refaire les questions 1 et 2 avec la liste de nombres 71 50 32 15 12 8

4. Refaire la même chose avec la liste : 8 12 15 32 50 71

5. Dans le cas où la liste de nombres à trier contient n nombres, donner en fonction de n la
complexité dans le pire des cas puis dans le meilleur des cas.

Mars 2024

Première-NSI Algorithmes de tri

Exercice 3 (une autre version du tri à bulles)

Cette fois-ci , on commence par comparer le dernier élément A[n] avec le précédent A[n-1] et
s'il est plus petit on les échange .Puis on refait de même en comparant A[n-1] et A[n-2] et
ainsi de suite .
De cette manière le premier élément du tableau est le plus petit.

Puis on recommence l'étape précédente avec les n-1 derniers éléments du tableau.
Quand il ne reste plus qu'un élément , le dernier en l'occurrence, l'algorithme s'arrête et le
tableau est trié.

Ecrire cet algorithme en pseudo-code puis le programmer en Python.
Exercice 4

1. Dans l'algorithme de Tri à bulles ,si lors d'une étape de la boucle Tant Que principale,
aucun échange n'est e�ectué dans la boucle Pour interne, c'est que le tableau est trié. Il
est donc inutile de poursuivre la boucle externe.
Décrivez un algorithme qui tient compte de cette remarque.

2. Combien de comparaisons d'éléments du tableau sont-elles e�ectuées lors du tri d'un
tableau de longueur n avec cette variante du tri à bulles ? Décrivez le meilleur et le pire
des cas.

3. Réalisez une fonction qui trie le tableau passé en paramètre selon cet algorithme.

Mars 2024

